fmri

Decoding of painful stimuli using fMRI data

Painful experience involves a distributed pattern of brain activity. With hypnosis, it’s possible to increase or decrease pain. This project aims to decode fMRI pain-evoked brain activity and identify pattern of activity that are associated with specific hypnotic conditions

Continue reading

The face of pain: predicting the facial expression of pain from fMRI data

What can our brain tells us about our facial expression in response to painful stimulus ? This projects aims to compare different regression algorithms to see if it is possible to predict facial expression of pain from fMRI data in healthy adults.

Continue reading

Can we identify sex using fMRI?

Does functional connectivity between brain regions differ in male and female? If yes then fMRI data can be used to distinguish sex on the basis of the difference in functional connectivity. I applied supervised Machine Learning algorithms on the fMRI data to classify sex.

Continue reading

Does rs-fMRI preprocessing matter for prediction performance in machine learning?

Machine learning models are often used to analyze fMRI data, whether it be a simple classification or regression problem or something more complex. While the focus of a study is often centered on the model architecture, data preprocessing also plays a vital role in a model’s success. This project will explore the effect that various preprocessing options may have on the prediction performance of a machine learning model for age prediction using resting state fMRI.

Continue reading

fMRIPrep 101 - Pre-processing fMRI data and extracting connectivity matrices

This project aimed to understand how to pre-process fMRI data using fMRIPrep. Through this learning experience, a tutorial was created.

Continue reading

Visualization of functional connectivity from multiple neuroimaging modalities

In this project I employed some of the tools we learned at the Brainhack school to generate interactive figures to display functional connectivity from MEG and fMRI resting state data from the Human Connectome Project.

Continue reading

Combine EEG/MRI/Behavioral data-sets to learn more about Music/Auditory system

In this project I aim to combine data from different modalities (fMRI, EEG, and behavioral) to understand more about sound and music processing. My main focus in this project was to try to reproduce some of the results from a published paper starting form raw data.

Continue reading

Diagnosing Schizophrenia from Brain Activity

Computational Psychiatry is growing trend that applies machine learning methods to psychological disorders. How well can we predict schizophrenia diagnosis from brain activity? This project uses neuroimaging tools from Nilearn, and machine learning tools from scikit-learn to differentiate patients diagnosed with schizophrenia from healthy controls using resting state fmri data.

Continue reading

MethNet: Visualizing methods in citation networks

A Python package that create a dynamic visualization the use of methods in citation networks over time.

Continue reading

Predicting Neuroticism and Personality Traits from fMRI Data

Are neuropsychiatric disorders extreme cases of connectivity patterns that are found in the overall population? Using personality traits as a measure of individual variation and knowing that neuroticism is especially linked with mental disorders we wanted to see if neuroticism in a healthy population was linked with specific patterns of connectivity that could be compared to those common to neuropsychiatric disorders.

Continue reading